В Калтехе разработали метод 3D-печати прочных нанометровых металлических структур - «Новости сети» » Интернет технологии
sitename
Как заработать денег, не выходя из дома, мы вам поможем с этим разобраться » Новости » Новости мира Интернет » В Калтехе разработали метод 3D-печати прочных нанометровых металлических структур - «Новости сети»

Исследователи из Калифорнийского технологического института (Caltech) добились значительного прогресса в области 3D-печати, разработав методику, позволяющую создавать металлические наноструктуры размером всего в 150 нанометров, что сопоставимо с размерами вируса гриппа. Эти структуры обладают прочностью в 3-5 раз выше, чем у макроскопических аналогов. Открытие, опубликованное в журнале Nano Letters, открывает новые перспективы для разработки наносенсоров, теплообменников и других нанотехнологических устройств.




В Калтехе разработали метод 3D-печати прочных нанометровых металлических структур - «Новости сети»


Источник изображений: Caltech



Ведущий автор исследования Вэньсинь Чжан (Wenxin Zhang) отмечает: «На атомарном уровне эти наноматериалы имеют очень сложную микроструктуру». В макроскопическом масштабе такая неупорядоченность атомов привела бы к существенным дефектам, делая материалы слабыми и низкокачественными. Однако на наноуровне этот беспорядок оборачивается преимуществом, увеличивая прочность материала.


«Обычно носитель деформации в металлических наностолбиках — это дислокация или сдвиг — распространяется, пока не сможет выйти на внешнюю поверхность. Но в присутствии внутренних пор распространение быстро прекращается на поверхности поры, а не продолжается через весь столбик. Как правило, инициировать носитель деформации сложнее, чем позволить ему распространяться, что объясняет, почему данные столбики могут быть прочнее своих аналогов», — объясняет Чжан. Это свойство делает наноструктуры неожиданно прочными.


Технология создания наноматериалов включает в себя работу с фоточувствительной смесью, содержащей гидрогель, которую затем затвердевают лазером, создавая 3D-каркас в форме желаемых металлических объектов. В этом исследовании объектами были серии микростолбиков и нанорешёток. Затем гидрогелевые детали пропитывают водным раствором, содержащим ионы никеля.




Наноразмерная решётка, полученная по новой методике, разработанной в лаборатории Джулии Р. Грир (Julia R. Greer)




После насыщения металлическими ионами детали обжигают до полного выгорания гидрогеля, оставляя части в той же форме, что и оригинальные, но уменьшенные и состоящие полностью из металлических ионов, теперь окисленных (связанных с атомами кислорода). На последнем этапе атомы кислорода химически удаляют из деталей, превращая металлический оксид обратно в металлическую форму.


«Во время этого процесса одновременно происходят все термические и кинетические процессы, и они приводят к очень сложной микроструктуре. Вы видите дефекты, такие как поры и нерегулярности в атомной структуре, которые обычно считаются дефектами, уменьшающими прочность. Если бы вы строили что-то из стали, например блок двигателя, вы бы не хотели видеть такую микроструктуру, потому что она значительно ослабила бы материал», — рассказывает Джулия Р. Грир (Julia R. Greer), профессор материаловедения, механики и медицинской инженерии Caltech и руководитель лаборатории, где проводилось исследование. Однако в данном случае эти дефекты, напротив, увеличивают прочность материала на наноуровне.




Нерегулярная внутренняя структура никелевого микростолбика




Процесс 3D-печати металлических структур на наноуровне, по словам Грир, может найти применение в создании множества полезных компонентов, включая катализаторы для водорода, электроды для хранения аммиака и других химикатов без углерода, а также важные части устройств, таких как сенсоры, микророботы и теплообменники.




Аспирантка факультета машиностроения Вэньсинь Чжан (Wenxin Zhang) работает в лаборатории нанотехнологий




Это открытие подчёркивает необычные свойства материи на наноуровне и предвещает революцию в создании нанотехнологических устройств. «Физика на наноуровне действительно странная, и чем глубже мы погружаемся в этот мир, тем чаще сталкиваемся с необычными законами», — заключает Чжан. Это напоминает о том, что наука и технологии неустанно движутся вперёд, открывая новые возможности для применения наноматериалов в различных сферах, от медицины до космических исследований.


Исследователи из Калифорнийского технологического института (Caltech) добились значительного прогресса в области 3D-печати, разработав методику, позволяющую создавать металлические наноструктуры размером всего в 150 нанометров, что сопоставимо с размерами вируса гриппа. Эти структуры обладают прочностью в 3-5 раз выше, чем у макроскопических аналогов. Открытие, опубликованное в журнале Nano Letters, открывает новые перспективы для разработки наносенсоров, теплообменников и других нанотехнологических устройств. Источник изображений: Caltech Ведущий автор исследования Вэньсинь Чжан (Wenxin Zhang) отмечает: «На атомарном уровне эти наноматериалы имеют очень сложную микроструктуру». В макроскопическом масштабе такая неупорядоченность атомов привела бы к существенным дефектам, делая материалы слабыми и низкокачественными. Однако на наноуровне этот беспорядок оборачивается преимуществом, увеличивая прочность материала. «Обычно носитель деформации в металлических наностолбиках — это дислокация или сдвиг — распространяется, пока не сможет выйти на внешнюю поверхность. Но в присутствии внутренних пор распространение быстро прекращается на поверхности поры, а не продолжается через весь столбик. Как правило, инициировать носитель деформации сложнее, чем позволить ему распространяться, что объясняет, почему данные столбики могут быть прочнее своих аналогов», — объясняет Чжан. Это свойство делает наноструктуры неожиданно прочными. Технология создания наноматериалов включает в себя работу с фоточувствительной смесью, содержащей гидрогель, которую затем затвердевают лазером, создавая 3D-каркас в форме желаемых металлических объектов. В этом исследовании объектами были серии микростолбиков и нанорешёток. Затем гидрогелевые детали пропитывают водным раствором, содержащим ионы никеля. Наноразмерная решётка, полученная по новой методике, разработанной в лаборатории Джулии Р. Грир (Julia R. Greer) После насыщения металлическими ионами детали обжигают до полного выгорания гидрогеля, оставляя части в той же форме, что и оригинальные, но уменьшенные и состоящие полностью из металлических ионов, теперь окисленных (связанных с атомами кислорода). На последнем этапе атомы кислорода химически удаляют из деталей, превращая металлический оксид обратно в металлическую форму. «Во время этого процесса одновременно происходят все термические и кинетические процессы, и они приводят к очень сложной микроструктуре. Вы видите дефекты, такие как поры и нерегулярности в атомной структуре, которые обычно считаются дефектами, уменьшающими прочность. Если бы вы строили что-то из стали, например блок двигателя, вы бы не хотели видеть такую микроструктуру, потому что она значительно ослабила бы материал», — рассказывает Джулия Р. Грир (Julia R. Greer), профессор материаловедения, механики и медицинской инженерии Caltech и руководитель лаборатории, где проводилось исследование. Однако в данном случае эти дефекты, напротив, увеличивают прочность материала на наноуровне. Нерегулярная внутренняя структура никелевого микростолбика Процесс 3D-печати металлических структур на наноуровне, по словам Грир, может найти применение в создании множества полезных компонентов, включая катализаторы для водорода, электроды для хранения аммиака и других химикатов без углерода, а также важные части устройств, таких как сенсоры, микророботы и теплообменники. Аспирантка факультета машиностроения Вэньсинь Чжан (Wenxin Zhang) работает в лаборатории нанотехнологий Это открытие подчёркивает необычные свойства материи на наноуровне и предвещает революцию в создании нанотехнологических устройств. «Физика на наноуровне действительно странная, и чем глубже мы погружаемся в этот мир, тем чаще сталкиваемся с необычными законами», — заключает Чжан. Это напоминает о том, что наука и технологии неустанно движутся вперёд, открывая новые возможности для применения наноматериалов в различных сферах, от медицины до космических исследований.
запостил(а)
Lawman
Вернуться назад

Смотрите также


А что там на главной? )))



Комментарии )))



Войти через: