Учение — свет: в MIT создали фотонный процессор для ИИ с высокой  скоростью и низким потреблением - «Новости сети» » Интернет технологии
sitename
Из чего состоит разработка веб-приложений и зачем это знать бизнесу
Из чего состоит разработка веб-приложений и зачем это знать бизнесу
Смартфоны Poco X7 Pro, Poco X7 и Poco F6 сочетают высокую производительность, надёжность и оригинальный дизайн - «Новости сети»
Смартфоны Poco X7 Pro, Poco X7 и Poco F6 сочетают высокую производительность, надёжность и оригинальный дизайн - «Новости сети»
На заводах Hyundai будут работать «десятки тысяч» человекоподобных роботов Boston Dynamics - «Новости сети»
На заводах Hyundai будут работать «десятки тысяч» человекоподобных роботов Boston Dynamics - «Новости сети»
Суд арестовал у Чубайса и экс-управленцев «Роснано» 5,6 млрд руб. по делу о планшетах Plastic Logic - «Новости сети»
Суд арестовал у Чубайса и экс-управленцев «Роснано» 5,6 млрд руб. по делу о планшетах Plastic Logic - «Новости сети»
Apple существенно изменит дизайн iPhone 19 Pro в честь 20-летия iPhone - «Новости сети»
Apple существенно изменит дизайн iPhone 19 Pro в честь 20-летия iPhone - «Новости сети»
Троян CraxsRAT использует NFCGate для кражи денег у российских пользователей - «Новости»
Троян CraxsRAT использует NFCGate для кражи денег у российских пользователей - «Новости»
Королевская почта Великобритании расследует возможную утечку данных - «Новости»
Королевская почта Великобритании расследует возможную утечку данных - «Новости»
РКН подготовил приказ об идентификации средств связи и пользовательского оборудования - «Новости»
РКН подготовил приказ об идентификации средств связи и пользовательского оборудования - «Новости»
В Google Cloud устранена уязвимость, раскрывавшая конфиденциальную информацию - «Новости»
В Google Cloud устранена уязвимость, раскрывавшая конфиденциальную информацию - «Новости»
Nvidia сделала PhysX и Flow полностью открытыми - «Новости сети»
Nvidia сделала PhysX и Flow полностью открытыми - «Новости сети»
Как заработать денег, не выходя из дома, мы вам поможем с этим разобраться » Новости » Новости мира Интернет » Учение — свет: в MIT создали фотонный процессор для ИИ с высокой  скоростью и низким потреблением - «Новости сети»

Группа из учёных Массачусетского технологического института и их зарубежных коллег создала, как они утверждают, первый полностью фотонный процессор для приложений искусственного интеллекта. Фотонный процессор работает не хуже аналогов на кремниевых транзисторах, но проводит вычисления с намного меньшим потреблением энергии. Это особенно важно для создания «думающей» периферии — лидаров, камер, устройств связи и другого, к чему теперь открыта прямая дорога.



Учение — свет: в MIT создали фотонный процессор для ИИ с высокой  скоростью и низким потреблением - «Новости сети»


Источник изображения: Sampson Wilcox, Research Laboratory of Electronics



Основная проблема при создании полностью фотонного чипа для ИИ заключается в том, что свет хорошо справляется с линейными вычислениями, тогда как нелинейные вычисления производятся с существенными затратами энергии. Для проведения последних необходимы специальные блоки, ведь фотоны реагируют друг с другом только в особых условиях. Поэтому прежде линейные операции, например, умножение матриц, проводились фотонным блоком, а для нелинейных вычислений световой сигнал переводился в форму электрического импульса и дальше обрабатывался по старинке — обычным процессором из кремниевых транзисторов.


Учёные из MIT поставили перед собой цель создать единый процессор, у которого на вход подавался бы световой сигнал и световой же сигнал был бы на выходе без использования кремниевых сопроцессоров. По их словам, используя предыдущие работы и находки зарубежных коллег, они добились поставленной задачи.


Разработанное исследователями оптическое устройство смогло выполнить ключевые вычисления для задачи классификации с помощью машинного обучения менее чем за половину наносекунды, при этом достигнув точности более 92 % — это производительность, которая находится на одном уровне с традиционным оборудованием. Созданный чип состоит из взаимосвязанных модулей, образующих оптическую нейронную сеть и изготовлен с использованием коммерческих литографических техпроцессов, что может обеспечить масштабирование технологии и её интеграцию в современную электронику.


Учёные обошли проблему с нелинейными фотонными вычислениями интересным образом. Они разработали интегрированный в оптический процессор блок NOFU — нелинейно-оптический функциональный блок, который позволил задействовать электронные цепи вместе с оптическими, но без перехода к внешним операциям. По-видимому, блок NOFU был выбран как компромисс между чисто фотонными нелинейными схемами и классическими, электронными.


Вначале система кодирует параметры глубокой нейронной сети в световых импульсах. Затем массив программируемых светоделителей выполняет матричное умножение входных данных. Потом данные передаются в программируемый слой NOFU, где реализуются нелинейные функции, передавая световые сигналы на фотодиоды. Последние, в свою очередь, транслируют световой сигнал в электрические импульсы. Поскольку этот этап не требует внешнего усиления, блоки NOFU потребляют очень мало энергии.


«Мы остаемся в оптической области всё время, до конца, когда хотим считать ответ. Это позволяет нам добиться сверхнизкой задержки», — говорят авторы исследования.

Цитирование статьи, картинки - фото скриншот - Rambler News Service.
Иллюстрация к статье - Яндекс. Картинки.
Есть вопросы. Напишите нам.
Общие правила  поведения на сайте.

Группа из учёных Массачусетского технологического института и их зарубежных коллег создала, как они утверждают, первый полностью фотонный процессор для приложений искусственного интеллекта. Фотонный процессор работает не хуже аналогов на кремниевых транзисторах, но проводит вычисления с намного меньшим потреблением энергии. Это особенно важно для создания «думающей» периферии — лидаров, камер, устройств связи и другого, к чему теперь открыта прямая дорога. Источник изображения: Sampson Wilcox, Research Laboratory of Electronics Основная проблема при создании полностью фотонного чипа для ИИ заключается в том, что свет хорошо справляется с линейными вычислениями, тогда как нелинейные вычисления производятся с существенными затратами энергии. Для проведения последних необходимы специальные блоки, ведь фотоны реагируют друг с другом только в особых условиях. Поэтому прежде линейные операции, например, умножение матриц, проводились фотонным блоком, а для нелинейных вычислений световой сигнал переводился в форму электрического импульса и дальше обрабатывался по старинке — обычным процессором из кремниевых транзисторов. Учёные из MIT поставили перед собой цель создать единый процессор, у которого на вход подавался бы световой сигнал и световой же сигнал был бы на выходе без использования кремниевых сопроцессоров. По их словам, используя предыдущие работы и находки зарубежных коллег, они добились поставленной задачи. Разработанное исследователями оптическое устройство смогло выполнить ключевые вычисления для задачи классификации с помощью машинного обучения менее чем за половину наносекунды, при этом достигнув точности более 92 % — это производительность, которая находится на одном уровне с традиционным оборудованием. Созданный чип состоит из взаимосвязанных модулей, образующих оптическую нейронную сеть и изготовлен с использованием коммерческих литографических техпроцессов, что может обеспечить масштабирование технологии и её интеграцию в современную электронику. Учёные обошли проблему с нелинейными фотонными вычислениями интересным образом. Они разработали интегрированный в оптический процессор блок NOFU — нелинейно-оптический функциональный блок, который позволил задействовать электронные цепи вместе с оптическими, но без перехода к внешним операциям. По-видимому, блок NOFU был выбран как компромисс между чисто фотонными нелинейными схемами и классическими, электронными. Вначале система кодирует параметры глубокой нейронной сети в световых импульсах. Затем массив программируемых светоделителей выполняет матричное умножение входных данных. Потом данные передаются в программируемый слой NOFU, где реализуются нелинейные функции, передавая световые сигналы на фотодиоды. Последние, в свою очередь, транслируют световой сигнал в электрические импульсы. Поскольку этот этап не требует внешнего усиления, блоки NOFU потребляют очень мало энергии. «Мы остаемся в оптической области всё время, до конца, когда хотим считать ответ. Это позволяет нам добиться сверхнизкой задержки», — говорят авторы исследования.
запостил(а)
Gerald
Вернуться назад

Смотрите также


А что там на главной? )))



Комментарии )))



Войти через: