Китайцы разработали процессор для машинного зрения, который в 3000 раз быстрее и в 4 млн раз эффективнее современного GPU - «Новости сети» » Интернет технологии
sitename
Как заработать денег, не выходя из дома, мы вам поможем с этим разобраться » Новости » Новости мира Интернет » Китайцы разработали процессор для машинного зрения, который в 3000 раз быстрее и в 4 млн раз эффективнее современного GPU - «Новости сети»

Учёные из китайского университета Цинхуа разработали полностью аналоговый фотоэлектронный чип ACCEL, который обещает совершить революцию в задачах высокоскоростного машинного зрения. Чип, сочетающий электронные и оптические технологии, способен продемонстрировать беспрецедентную энергоэффективность и высочайшую скорость вычислений для задач машинного зрения. В этой сфере новый чип радикально превосходит современные графические процессоры.




Китайцы разработали процессор для машинного зрения, который в 3000 раз быстрее и в 4 млн раз эффективнее современного GPU - «Новости сети»


Источник изображения: Pixabay



Традиционные процессоры обладают ограниченной скоростью вычислений и потребляют колоссальное количество энергии при решении задач машинного зрения, таких как распознавание изображений для автономного вождения, робототехники и медицинской диагностики. Эти задачи требуют обработки изображений с высоким разрешением, точной классификации и сверхнизкой задержки.


Чип ACCEL реализует преимущества развивающейся области фотонных вычислений, которые используют свет для обработки информации. Интегрируя дифракционные оптические аналоговые вычисления (OAC) и электронные аналоговые вычисления (EAC) в одном чипе, ACCEL достигает замечательной энергоэффективности и скорости вычислений.


Метод OAC использует управление световыми волнами посредством дифракции для кодирования и обработки информации. При помощи интерференционных паттернов, создаваемых светом, вычисления производятся аналоговым способом, обрабатывая данные непрерывно, а не дискретными цифровыми шагами. Метод EAC использует электронные компоненты для манипулирования непрерывными физическими величинами. Вместо работы с цифровыми сигналами в виде нулей и единиц, EAC использует постоянно меняющиеся аналоговые сигналы.





Архитектура ACCEL / Источник изображения: Tsinghua University




Оба метода дают преимущества для определённых видов вычислений и способствуют разработке задач высокоскоростного зрения.


ACCEL при обработке изображений не требует АЦП для преобразования изображения, напрямую используя для вычислений фототоки, индуцированные светом, что приводит к значительному сокращению задержек. ACCEL достигает системной энергоэффективности 74,8 пета-операций в секунду на ватт, что более чем на три порядка выше, чем у современных графических процессоров. Скорость вычислений достигает 4,6 пета-операций в секунду, при этом более 99 % вычислений выполняются оптически.


Благодаря интеграции оптоэлектронных вычислений и адаптивного обучения ACCEL достигает конкурентоспособной точности классификации объектов в различных задачах. Новый чип продемонстрировал точность 85,5 %, 82,0 % и 92,6 % для задач Fashion-MNIST, 3-классовой классификации ImageNet и задач распознавания покадрового видео соответственно. Примечательно, что ACCEL демонстрирует высокую надёжность даже в условиях низкой освещённости, что делает его пригодным для портативных устройств, автономного вождения и промышленных применения.





Сравнение скорости и энергоэффективности ACCEL с традиционными методами / Источник изображения: Tsinghua University




Сверхнизкое энергопотребление нового чипа значительно снижает тепловыделение, открывая путь дальнейшему совершенствованию и миниатюризации. В отличие от традиционных оптоэлектронных цифровых вычислительных систем, ACCEL гибко сочетает дифракционные оптические вычисления и электронные аналоговые вычисления, а его архитектура обеспечивает масштабируемость, нелинейность и высокую адаптируемость.


В исследовании, опубликованном в журнале Nature, исследователи заявили: «Разработка вычислительной системы, основанной на совершенно новом принципе, является огромной задачей. Однако ещё более важно успешно реализовать эту вычислительную архитектуру следующего поколения в реальные приложения, отвечающие важнейшим потребностям общества».


В рецензии на исследование, опубликованной в журнале Nature's Research Briefing, эксперты высказали убеждение, что «ACCEL может позволить этим архитектурам сыграть роль в нашей повседневной жизни гораздо раньше, чем ожидалось».


Всё новое — это, несомненно, хорошо забытое старое. Самым первым аналоговым вычислительным устройством является хорошо знакомая старшему поколению логарифмическая линейка.





Источник изображения: myruler.ru



Другим известным примером аналоговых вычислительных устройств является настольная аналоговая вычислительная машина МН-7, разработанная в далёком 1955 году. Она успешно решала обыкновенные дифференциальные уравнения до 6-го порядка. Не менее успешно при помощи подобных машин создавались математические модели физических процессов, что использовалось при решении задач АСУ ТП.





Источник изображения: computerra.ru



В аналоговой вычислительной машине (АВМ) мгновенному значению исходной переменной величины ставится в соответствие мгновенное значение другой величины, часто отличающейся от исходной физической природой и масштабным коэффициентом. Каждой элементарной математической операции, как правило, соответствует физический закон, устанавливающий математические зависимости между физическими величинами на выходе и входе (например, закон Ома).


Особенности представления исходных величин и построения алгоритмов предопределяют большую скорость работы АВМ и простоту программирования, но ограничивают область применения и точность получаемого результата. АВМ отличается малой универсальностью (алгоритмическая ограниченность) — при решении задач другого класса необходимо перестраивать структуру машины и число решающих элементов.


А теперь мы становимся свидетелями того, как в мире, казалось бы, победивших цифровых технологий, вновь начинают находить применение аналоговые вычисления, вышедшие на новый уровень развития.


Учёные из китайского университета Цинхуа разработали полностью аналоговый фотоэлектронный чип ACCEL, который обещает совершить революцию в задачах высокоскоростного машинного зрения. Чип, сочетающий электронные и оптические технологии, способен продемонстрировать беспрецедентную энергоэффективность и высочайшую скорость вычислений для задач машинного зрения. В этой сфере новый чип радикально превосходит современные графические процессоры. Источник изображения: Pixabay Традиционные процессоры обладают ограниченной скоростью вычислений и потребляют колоссальное количество энергии при решении задач машинного зрения, таких как распознавание изображений для автономного вождения, робототехники и медицинской диагностики. Эти задачи требуют обработки изображений с высоким разрешением, точной классификации и сверхнизкой задержки. Чип ACCEL реализует преимущества развивающейся области фотонных вычислений, которые используют свет для обработки информации. Интегрируя дифракционные оптические аналоговые вычисления (OAC) и электронные аналоговые вычисления (EAC) в одном чипе, ACCEL достигает замечательной энергоэффективности и скорости вычислений. Метод OAC использует управление световыми волнами посредством дифракции для кодирования и обработки информации. При помощи интерференционных паттернов, создаваемых светом, вычисления производятся аналоговым способом, обрабатывая данные непрерывно, а не дискретными цифровыми шагами. Метод EAC использует электронные компоненты для манипулирования непрерывными физическими величинами. Вместо работы с цифровыми сигналами в виде нулей и единиц, EAC использует постоянно меняющиеся аналоговые сигналы. Архитектура ACCEL / Источник изображения: Tsinghua University Оба метода дают преимущества для определённых видов вычислений и способствуют разработке задач высокоскоростного зрения. ACCEL при обработке изображений не требует АЦП для преобразования изображения, напрямую используя для вычислений фототоки, индуцированные светом, что приводит к значительному сокращению задержек. ACCEL достигает системной энергоэффективности 74,8 пета-операций в секунду на ватт, что более чем на три порядка выше, чем у современных графических процессоров. Скорость вычислений достигает 4,6 пета-операций в секунду, при этом более 99 % вычислений выполняются оптически. Благодаря интеграции оптоэлектронных вычислений и адаптивного обучения ACCEL достигает конкурентоспособной точности классификации объектов в различных задачах. Новый чип продемонстрировал точность 85,5 %, 82,0 % и 92,6 % для задач Fashion-MNIST, 3-классовой классификации ImageNet и задач распознавания покадрового видео соответственно. Примечательно, что ACCEL демонстрирует высокую надёжность даже в условиях низкой освещённости, что делает его пригодным для портативных устройств, автономного вождения и промышленных применения. Сравнение скорости и энергоэффективности ACCEL с традиционными методами / Источник изображения: Tsinghua University Сверхнизкое энергопотребление нового чипа значительно снижает тепловыделение, открывая путь дальнейшему совершенствованию и миниатюризации. В отличие от традиционных оптоэлектронных цифровых вычислительных систем, ACCEL гибко сочетает дифракционные оптические вычисления и электронные аналоговые вычисления, а его архитектура обеспечивает масштабируемость, нелинейность и высокую адаптируемость. В исследовании, опубликованном в журнале Nature, исследователи заявили: «Разработка вычислительной системы, основанной на совершенно новом принципе, является огромной задачей. Однако ещё более важно успешно реализовать эту вычислительную архитектуру следующего поколения в реальные приложения, отвечающие важнейшим потребностям общества». В рецензии на исследование, опубликованной в журнале Nature's Research Briefing, эксперты высказали убеждение, что «ACCEL может позволить этим архитектурам сыграть роль в нашей повседневной жизни гораздо раньше, чем ожидалось». Всё новое — это, несомненно, хорошо забытое старое. Самым первым аналоговым вычислительным устройством является хорошо знакомая старшему поколению логарифмическая линейка. Источник изображения: myruler.ru Другим известным примером аналоговых вычислительных устройств является настольная аналоговая вычислительная машина МН-7, разработанная в далёком 1955 году. Она успешно решала обыкновенные дифференциальные уравнения до 6-го порядка. Не менее успешно при помощи подобных машин создавались математические модели физических процессов, что использовалось при решении задач АСУ ТП. Источник изображения: computerra.ru В аналоговой вычислительной машине (АВМ) мгновенному значению исходной переменной величины ставится в соответствие мгновенное значение другой величины, часто отличающейся от исходной физической природой и масштабным коэффициентом. Каждой элементарной математической операции, как правило, соответствует физический закон, устанавливающий математические зависимости между физическими величинами на выходе и входе (например, закон Ома). Особенности представления исходных величин и построения алгоритмов предопределяют большую скорость работы АВМ и простоту программирования, но ограничивают область применения и точность получаемого результата. АВМ отличается малой универсальностью (алгоритмическая ограниченность) — при решении задач другого класса необходимо перестраивать структуру машины и число решающих элементов. А теперь мы становимся свидетелями того, как в мире, казалось бы, победивших цифровых технологий, вновь начинают находить применение аналоговые вычисления, вышедшие на новый уровень развития.

Смотрите также

А что там на главной? )))



Комментарии )))



Комментарии для сайта Cackle
Войти через:
Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика