Китайские учёные научились добывать полупроводниковые материалы из сточных вод с помощью бактерий - «Новости сети» » Интернет технологии
sitename
Как заработать денег, не выходя из дома, мы вам поможем с этим разобраться » Новости » Новости мира Интернет » Китайские учёные научились добывать полупроводниковые материалы из сточных вод с помощью бактерий - «Новости сети»

Команде учёных из китайских исследовательских институтов удалось использовать бактерии для очистки сточных вод от органических загрязнителей и получения ряда химических соединений для полупроводниковой промышленности. Этот процесс может проложить путь к устойчивому и экологически чистому производству ценных полупроводниковых материалов. Результаты исследования были опубликованы 16 октября в рецензируемом журнале Nature Sustainability.




Китайские учёные научились добывать полупроводниковые материалы из сточных вод с помощью бактерий - «Новости сети»


Источник изображений: Pixabay



Исследование, возглавляемое профессором Гао Сяном (Gao Xiang) из Шэньчжэньского института синтетической биологии Китайской академии наук и профессором Лу Лу (Lu Lu) из Харбинского технологического института в Шэньчжэне, продемонстрировало возможность получения материалов, используемых для изготовления полупроводников, из сточных вод с помощью генно-модифицированных бактерий. Исследователям удалось преобразовать загрязнители сточных вод в полупроводниковые биогибриды, состоящие из биологических и небиологических компонентов.


Исследовательская группа выбрала морской микроорганизм Vibrio natriegens в качестве отправной точки для модифицирования бактерий. По словам учёных, «это одни из самых быстрорастущих бактерий, которые процветают в средах с высоким содержанием соли и очень устойчивы к сточным водам. Они могут использовать более 200 типов органических материалов в качестве питательных веществ, включая сахара, спирты, аминокислоты и органические кислоты, что делает их идеальными кандидатами для этого исследования».


Затем команда «запустила» механизм восстановления сульфатов в Vibrio natriegens, обучив штамм непосредственно поглощать сульфат из окружающей среды и производить сероводород, который затем объединялся с ионами металлов в сточных водах для создания полупроводниковых наночастиц. Метод оказался универсальным и его можно было применять к ионам различных металлов, получая такие соединения, как сульфид кадмия, сульфид свинца и сульфид ртути.


Наночастицы фиксировались на поверхности бактерий, образуя полупроводниковые биогибриды. Под воздействием света полупроводниковый материал поглощал солнечную энергию и преобразовывал её в электроны, обеспечивая бактериям дополнительную энергию. В лабораторном эксперименте, в котором биогибриды использовались для очистки сточных вод, 99 % ионов кадмия были таким образом извлечены в виде частиц сульфида кадмия.


Эти типы наночастиц, также известные как квантовые точки, стали центральным элементом открытия, за которое другая группа учёных получила в этом году Нобелевскую премию по химии. «После полного цикла биогибриды в сточных водах можно собирать посредством фильтрации или седиментации (осаждения частиц) для извлечения полупроводниковых материалов, — сообщил Гао Сян. — Эта система может стать эффективным и экономически выгодным методом производства очень ценных квантовых точек».


При размножении биогибридов в сточных водах они также преобразует органические загрязнители в 2,3-бутандиол (БДО), ценный химикат, который широко применяется в косметике, сельском хозяйстве и здравоохранении. Лабораторные испытания показали, что при искусственном освещении биогибриды производят БДО в два раза быстрее, чем немодифицированные бактерии, при этом степень конверсии углерода увеличивается на 26 %.



«Дополнительная энергия, генерируемая наночастицами за счёт поглощения света, повысила эффективность синтеза биогибридов и скорость преобразования органических веществ в сточных водах. Традиционно вся энергия, необходимая для роста бактерий и производства БДО, обеспечивается самими бактериями, что включает в себя самометаболизм и переваривание органических веществ. Дополнительная энергия, полученная за счёт поглощения света, очевидно, ускоряет оба процесса» — пояснил Гао.


В эксперименте, проведённом в 5-литровом реакторе, биогибриды были успешно выращены с использованием реальных промышленных сточных вод, достигнув производительности БДО 13 граммов на литр и превзойдя результаты всех предыдущих исследований.


Сейчас учёные изучают возможности масштабирования процесса. Основным препятствием становится плохая прозрачность промышленных сточных вод. Поэтому требуются реакторы с большей площадью поверхности, чтобы обеспечить достаточное для активной деятельности бактерий освещение.


«Полупроводниковые биогибриды объединяют в себе лучшие качества биологических цельноклеточных катализаторов и полупроводниковых наноматериалов, позволяя нефотосинтетическим промышленным заводам по производству микробных клеток использовать солнечную энергию для химического производства», — резюмировали исследователи.


Команде учёных из китайских исследовательских институтов удалось использовать бактерии для очистки сточных вод от органических загрязнителей и получения ряда химических соединений для полупроводниковой промышленности. Этот процесс может проложить путь к устойчивому и экологически чистому производству ценных полупроводниковых материалов. Результаты исследования были опубликованы 16 октября в рецензируемом журнале Nature Sustainability. Источник изображений: Pixabay Исследование, возглавляемое профессором Гао Сяном (Gao Xiang) из Шэньчжэньского института синтетической биологии Китайской академии наук и профессором Лу Лу (Lu Lu) из Харбинского технологического института в Шэньчжэне, продемонстрировало возможность получения материалов, используемых для изготовления полупроводников, из сточных вод с помощью генно-модифицированных бактерий. Исследователям удалось преобразовать загрязнители сточных вод в полупроводниковые биогибриды, состоящие из биологических и небиологических компонентов. Исследовательская группа выбрала морской микроорганизм Vibrio natriegens в качестве отправной точки для модифицирования бактерий. По словам учёных, «это одни из самых быстрорастущих бактерий, которые процветают в средах с высоким содержанием соли и очень устойчивы к сточным водам. Они могут использовать более 200 типов органических материалов в качестве питательных веществ, включая сахара, спирты, аминокислоты и органические кислоты, что делает их идеальными кандидатами для этого исследования». Затем команда «запустила» механизм восстановления сульфатов в Vibrio natriegens, обучив штамм непосредственно поглощать сульфат из окружающей среды и производить сероводород, который затем объединялся с ионами металлов в сточных водах для создания полупроводниковых наночастиц. Метод оказался универсальным и его можно было применять к ионам различных металлов, получая такие соединения, как сульфид кадмия, сульфид свинца и сульфид ртути. Наночастицы фиксировались на поверхности бактерий, образуя полупроводниковые биогибриды. Под воздействием света полупроводниковый материал поглощал солнечную энергию и преобразовывал её в электроны, обеспечивая бактериям дополнительную энергию. В лабораторном эксперименте, в котором биогибриды использовались для очистки сточных вод, 99 % ионов кадмия были таким образом извлечены в виде частиц сульфида кадмия. Эти типы наночастиц, также известные как квантовые точки, стали центральным элементом открытия, за которое другая группа учёных получила в этом году Нобелевскую премию по химии. «После полного цикла биогибриды в сточных водах можно собирать посредством фильтрации или седиментации (осаждения частиц) для извлечения полупроводниковых материалов, — сообщил Гао Сян. — Эта система может стать эффективным и экономически выгодным методом производства очень ценных квантовых точек». При размножении биогибридов в сточных водах они также преобразует органические загрязнители в 2,3-бутандиол (БДО), ценный химикат, который широко применяется в косметике, сельском хозяйстве и здравоохранении. Лабораторные испытания показали, что при искусственном освещении биогибриды производят БДО в два раза быстрее, чем немодифицированные бактерии, при этом степень конверсии углерода увеличивается на 26 %. «Дополнительная энергия, генерируемая наночастицами за счёт поглощения света, повысила эффективность синтеза биогибридов и скорость преобразования органических веществ в сточных водах. Традиционно вся энергия, необходимая для роста бактерий и производства БДО, обеспечивается самими бактериями, что включает в себя самометаболизм и переваривание органических веществ. Дополнительная энергия, полученная за счёт поглощения света, очевидно, ускоряет оба процесса» — пояснил Гао. В эксперименте, проведённом в 5-литровом реакторе, биогибриды были успешно выращены с использованием реальных промышленных сточных вод, достигнув производительности БДО 13 граммов на литр и превзойдя результаты всех предыдущих исследований. Сейчас учёные изучают возможности масштабирования процесса. Основным препятствием становится плохая прозрачность промышленных сточных вод. Поэтому требуются реакторы с большей площадью поверхности, чтобы обеспечить достаточное для активной деятельности бактерий освещение. «Полупроводниковые биогибриды объединяют в себе лучшие качества биологических цельноклеточных катализаторов и полупроводниковых наноматериалов, позволяя нефотосинтетическим промышленным заводам по производству микробных клеток использовать солнечную энергию для химического производства», — резюмировали исследователи.
запостил(а)
Edgarpo
Вернуться назад

Смотрите также

А что там на главной? )))



Комментарии )))



Комментарии для сайта Cackle
Войти через:
Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика