Etched представила ИИ-чип для нейросетей-трансформеров — он в разы быстрее и дешевле ускорителей Nvidia - «Новости сети» » Интернет технологии
sitename
Как заработать денег, не выходя из дома, мы вам поможем с этим разобраться » Новости » Новости мира Интернет » Etched представила ИИ-чип для нейросетей-трансформеров — он в разы быстрее и дешевле ускорителей Nvidia - «Новости сети»

Компания Etched основана два года назад двумя выпускниками Гарварда с целью разработать специализированный ускоритель ИИ. Чипы Etched уникальны тем, что поддерживают лишь один тип моделей ИИ: трансформеры. Эта архитектура, предложенная командой исследователей Google в 2017 году, на сегодняшний день стала доминирующей архитектурой генеративного ИИ.



Etched представила ИИ-чип для нейросетей-трансформеров — он в разы быстрее и дешевле ускорителей Nvidia - «Новости сети»


Источник изображений: Etched



Чип Sohu, разработанный Etched, представляет собой интегральную схему специального назначения (ASIC), изготовленную по 4-нм техпроцессу TSMC. По словам генерального директора компании Гэвина Уберти (Gavin Uberti), новый чип может обеспечить значительно лучшую производительность вывода, чем графические процессоры и другие ИИ-чипы общего назначения, потребляя при этом меньше энергии.


«Sohu на порядок быстрее и дешевле, чем даже следующее поколение графических процессоров Nvidia Blackwell GB200 при работе с преобразователями текста, изображений и видео, — утверждает Уберти. — Один сервер Sohu заменяет 160 графических процессоров H100. Sohu станет более доступным, эффективным и экологически чистым вариантом для бизнес-лидеров, которым нужны специализированные чипы».



Эксперты предполагают, что подобных результатов Etched могла добиться при помощи оптимизированного под трансформеры аппаратно-программного конвейера вывода. Это позволило разработчикам отказаться от аппаратных компонентов, нужных для поддержки других платформ и сократить накладные расходы на программное обеспечение.


Etched выходит на сцену в переломный момент в гонке инфраструктур генеративного ИИ. Помимо высоких стартовых затрат на оборудование, ускорители вычислений потребляют огромное количество электроэнергии и водных ресурсов. По прогнозам, к 2030 году ИИ-бум приведёт к увеличению спроса на электроэнергию в ЦОД на 160 %, что будет способствовать значительному увеличению выбросов парниковых газов. ЦОД к 2027 году потребуют до 6,5 миллионов кубометров пресной воды для охлаждения серверов.



«Наши будущие клиенты не смогут не перейти на Sohu, — уверен Уберти. — Компании готовы сделать ставку на Etched, потому что скорость и стоимость имеют решающее значение для продуктов искусственного интеллекта, которые они пытаются создать». Похоже, что инвесторы полны оптимизма — Etched на сегодняшний день привлекла финансирование в объёме $125,36 млн.


Компания утверждает, что неназванные клиенты уже зарезервировали «десятки миллионов долларов» на приобретение её чипов, а предстоящий запуск Sohu Developer Cloud позволит им предварительно оценить возможности Sohu на интерактивной онлайн площадке.


Пока рано говорить о том, будет ли этого достаточно, чтобы продвинуть Etched и её команду из 35 человек в будущее, которым грезят её учредители. Достаточно вспомнить провалы подобных стартапов, таких как Mythic и Graphcore, и обратить внимание на общее снижение инвестиций в предприятия по производству ИИ-чипов в 2023 году.


«В 2022 году мы сделали ставку на то, что трансформеры захватят мир, — заявил Уберти. — Мы достигли точки в эволюции искусственного интеллекта, когда специализированные чипы, которые могут работать лучше, чем графические процессоры общего назначения, неизбежны — и лица, принимающие технические решения во всем мире, знают это».



В настоящее время у компании нет прямых конкурентов, хотя стартап по производству ИИ-чипов Perceive недавно анонсировал процессор с аппаратным ускорением для трансформеров, а Groq вложил значительные средства в оптимизацию своих ASIC для конкретных моделей.


Компания Etched основана два года назад двумя выпускниками Гарварда с целью разработать специализированный ускоритель ИИ. Чипы Etched уникальны тем, что поддерживают лишь один тип моделей ИИ: трансформеры. Эта архитектура, предложенная командой исследователей Google в 2017 году, на сегодняшний день стала доминирующей архитектурой генеративного ИИ. Источник изображений: Etched Чип Sohu, разработанный Etched, представляет собой интегральную схему специального назначения (ASIC), изготовленную по 4-нм техпроцессу TSMC. По словам генерального директора компании Гэвина Уберти (Gavin Uberti), новый чип может обеспечить значительно лучшую производительность вывода, чем графические процессоры и другие ИИ-чипы общего назначения, потребляя при этом меньше энергии. «Sohu на порядок быстрее и дешевле, чем даже следующее поколение графических процессоров Nvidia Blackwell GB200 при работе с преобразователями текста, изображений и видео, — утверждает Уберти. — Один сервер Sohu заменяет 160 графических процессоров H100. Sohu станет более доступным, эффективным и экологически чистым вариантом для бизнес-лидеров, которым нужны специализированные чипы». Эксперты предполагают, что подобных результатов Etched могла добиться при помощи оптимизированного под трансформеры аппаратно-программного конвейера вывода. Это позволило разработчикам отказаться от аппаратных компонентов, нужных для поддержки других платформ и сократить накладные расходы на программное обеспечение. Etched выходит на сцену в переломный момент в гонке инфраструктур генеративного ИИ. Помимо высоких стартовых затрат на оборудование, ускорители вычислений потребляют огромное количество электроэнергии и водных ресурсов. По прогнозам, к 2030 году ИИ-бум приведёт к увеличению спроса на электроэнергию в ЦОД на 160 %, что будет способствовать значительному увеличению выбросов парниковых газов. ЦОД к 2027 году потребуют до 6,5 миллионов кубометров пресной воды для охлаждения серверов. «Наши будущие клиенты не смогут не перейти на Sohu, — уверен Уберти. — Компании готовы сделать ставку на Etched, потому что скорость и стоимость имеют решающее значение для продуктов искусственного интеллекта, которые они пытаются создать». Похоже, что инвесторы полны оптимизма — Etched на сегодняшний день привлекла финансирование в объёме $125,36 млн. Компания утверждает, что неназванные клиенты уже зарезервировали «десятки миллионов долларов» на приобретение её чипов, а предстоящий запуск Sohu Developer Cloud позволит им предварительно оценить возможности Sohu на интерактивной онлайн площадке. Пока рано говорить о том, будет ли этого достаточно, чтобы продвинуть Etched и её команду из 35 человек в будущее, которым грезят её учредители. Достаточно вспомнить провалы подобных стартапов, таких как Mythic и Graphcore, и обратить внимание на общее снижение инвестиций в предприятия по производству ИИ-чипов в 2023 году. «В 2022 году мы сделали ставку на то, что трансформеры захватят мир, — заявил Уберти. — Мы достигли точки в эволюции искусственного интеллекта, когда специализированные чипы, которые могут работать лучше, чем графические процессоры общего назначения, неизбежны — и лица, принимающие технические решения во всем мире, знают это». В настоящее время у компании нет прямых конкурентов, хотя стартап по производству ИИ-чипов Perceive недавно анонсировал процессор с аппаратным ускорением для трансформеров, а Groq вложил значительные средства в оптимизацию своих ASIC для конкретных моделей.
запостил(а)
Owen
Вернуться назад

Смотрите также


А что там на главной? )))



Комментарии )))



Комментарии для сайта Cackle
Войти через:
Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика