Молекулярная запись данных стала немного ближе - «Новости сети»
sitename
Как заработать денег, не выходя из дома, мы вам поможем с этим разобраться » Новости » Новости мира Интернет » Молекулярная запись данных стала немного ближе - «Новости сети»


Рано или поздно на смену жёстким дискам и SSD придут новые виды носителей данных, на что намекает экспоненциальный рост объёмов информации. Для этого уже сейчас учёные бьются над проблемами записи на молекулярном уровне, и определённые успехи на этом направлении есть.


Группа учёных из Университета Брауна (США) сообщила о прогрессе в разработке методов записи и считывания данных на молекулярном уровне. Данные об исследовании опубликованы в Nature Communications (статья доступна для бесплатного прочтения на английском языке). В серии экспериментов учёные записали, сохранили и затем считали цифровые файлы с закодированными изображениями египетского бога Анубиса, абстрактной картины скрипки Пикассо и другие изображения общим объёмом 200 Кбайт.


Это не первая попытка закодировать данные с помощью набора молекул, но в данном случае учёные решили не ждать милости от природы. До данного эксперимента учёные брали известные химические соединения (молекулы) и создавали из них смеси - таким образом кодировали входящие данные. Считывание данных происходит с помощью последовательного анализа смесей масс-спектрометром. Затем компьютерная программа преобразует полученный результат в картинку или текст. Подобный подход был ограничен известным химикам набором небольших по размеру молекул. А чем меньше молекул, тем меньше возможностей для кодирования, например, с точки зрения разрядности.


Учёные из Университета Брауна синтезировали собственные наборы молекул - библиотеки для кодирования данных. Вся хитрость заключалась в том, чтобы из простейших соединений и без сложных реакций научиться быстро создавать библиотеки из простых молекул, которые масс-спектрометр мог бы идентифицировать с максимальной точностью.


Для синтеза малых молекул была выбрана так называемая Уги реакция - это многокомпонентная комбинаторная реакция с использованием четырёх компонентов: карбоновой кислоты, амина, альдегида (кетона) и изоцианида. Эта реакция широко используется в фармацевтике и является надёжным инструментом для синтеза соединений. Для создания библиотек из молекул в различных комбинациях использовались пять аминов, пять альдегидов, 12 карбоновых кислот и пять изоцианидов. Всего учёные смогли создать до 1500 соединений.


Преимуществом здесь является потенциальная масштабируемость библиотеки. Используя всего 27 различных компонентов, учёные за один день создали библиотеку из 1500 молекул и им не пришлось искать для этого какие-либо уникальные молекулы.


Для кодирования каждой картинки использовались свои библиотеки в виде уникального набора из молекул. Для записи изображения Анубиса, например, библиотека содержала 32 компонента. Для кодирования 0,88-мегапиксельного рисунка Пикассо была задействована библиотека из 575 соединений.


Технически запись происходила следующим образом. Данные кодировались в смеси молекул, которые помещались в крохотные лунки диаметром менее миллиметра на небольших пластинках из железа. В каждой лунке (капле) уникальных молекул может быть так же много, как в библиотеке. Например, в самом максимальном случае - 1500, но надёжно считать их все в такой комбинации пока нельзя. Тем не менее, это позволяет судить о разрядности каждой смеси, а она ограничена только размерами библиотеки. Затем каждая смесь считывается масс-спектрометром, молекулы идентифицируются и входящие данные расшифровываются.


Для представленного метода учёным пришлось разрабатывать алгоритмы коррекции ошибок. Разработанный метод позволил идентифицировать молекулы с точностью до 99 %. Метод доказал свою надёжность, но исследования необходимо продолжить.

Рано или поздно на смену жёстким дискам и SSD придут новые виды носителей данных, на что намекает экспоненциальный рост объёмов информации. Для этого уже сейчас учёные бьются над проблемами записи на молекулярном уровне, и определённые успехи на этом направлении есть. Группа учёных из Университета Брауна (США) сообщила о прогрессе в разработке методов записи и считывания данных на молекулярном уровне. Данные об исследовании опубликованы в Nature Communications (статья доступна для бесплатного прочтения на английском языке). В серии экспериментов учёные записали, сохранили и затем считали цифровые файлы с закодированными изображениями египетского бога Анубиса, абстрактной картины скрипки Пикассо и другие изображения общим объёмом 200 Кбайт. Это не первая попытка закодировать данные с помощью набора молекул, но в данном случае учёные решили не ждать милости от природы. До данного эксперимента учёные брали известные химические соединения (молекулы) и создавали из них смеси - таким образом кодировали входящие данные. Считывание данных происходит с помощью последовательного анализа смесей масс-спектрометром. Затем компьютерная программа преобразует полученный результат в картинку или текст. Подобный подход был ограничен известным химикам набором небольших по размеру молекул. А чем меньше молекул, тем меньше возможностей для кодирования, например, с точки зрения разрядности. Учёные из Университета Брауна синтезировали собственные наборы молекул - библиотеки для кодирования данных. Вся хитрость заключалась в том, чтобы из простейших соединений и без сложных реакций научиться быстро создавать библиотеки из простых молекул, которые масс-спектрометр мог бы идентифицировать с максимальной точностью. Для синтеза малых молекул была выбрана так называемая Уги реакция - это многокомпонентная комбинаторная реакция с использованием четырёх компонентов: карбоновой кислоты, амина, альдегида (кетона) и изоцианида. Эта реакция широко используется в фармацевтике и является надёжным инструментом для синтеза соединений. Для создания библиотек из молекул в различных комбинациях использовались пять аминов, пять альдегидов, 12 карбоновых кислот и пять изоцианидов. Всего учёные смогли создать до 1500 соединений. Преимуществом здесь является потенциальная масштабируемость библиотеки. Используя всего 27 различных компонентов, учёные за один день создали библиотеку из 1500 молекул и им не пришлось искать для этого какие-либо уникальные молекулы. Для кодирования каждой картинки использовались свои библиотеки в виде уникального набора из молекул. Для записи изображения Анубиса, например, библиотека содержала 32 компонента. Для кодирования 0,88-мегапиксельного рисунка Пикассо была задействована библиотека из 575 соединений. Технически запись происходила следующим образом. Данные кодировались в смеси молекул, которые помещались в крохотные лунки диаметром менее миллиметра на небольших пластинках из железа. В каждой лунке (капле) уникальных молекул может быть так же много, как в библиотеке. Например, в самом максимальном случае - 1500, но надёжно считать их все в такой комбинации пока нельзя. Тем не менее, это позволяет судить о разрядности каждой смеси, а она ограничена только размерами библиотеки. Затем каждая смесь считывается масс-спектрометром, молекулы идентифицируются и входящие данные расшифровываются. Для представленного метода учёным пришлось разрабатывать алгоритмы коррекции ошибок. Разработанный метод позволил идентифицировать молекулы с точностью до 99 %. Метод доказал свою надёжность, но исследования необходимо продолжить.
А что там на главной? )))



Комментарии )))



Комментарии для сайта Cackle
Войти через:
Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика Яндекс.Метрика